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Given n uniformly and independently distributed points in the d-
dimensional cube of unit volume, it is well established that the length of
the minimum spanning tree on these n points is asymptotic to
Busr(d)n@~Y/9 where the constant Bygr(d) depends only on the dimen-
sion d. It has been a major open problem to determine the constant
Busr(d). In this paper we obtain an exact expression for the constant
Bust(d) on a torus as a series expansion. Truncating the expansion after a
finite number of terms yields a sequence of lower bounds; the first five
terms give a lower bound which is already very close to the empirically
estimated value of the constant. Our proof technique unifies the derivation
for the MST asymptotic behavior for the Euclidean and the independent
model.

1. Introduction. Research in the area of probabilistic analysis of combi-
natorial optimization problems in Euclidean spaces was initiated by the pio-
neering paper by Beardwood, Halton and Hammersley [3], where the authors
prove the following remarkable result:

TueoreM ((3]). If X, are independent and uniformly distributed points in a
region of R?® with volume a, then the length L gp of the traveling salesman
tour (TSP) under the usual Euclidean metric through the points X;, ..., X,
almost surely satisfies

LTSP
im ——— = 1/d
'}_)w n(d—l)/d _BTSP(d)a ’

where Bpsp(d) is a constant that depends only on the dimension d.

This result was generalized to other combinatorial problems defined on
Euclidean spaces, including the minimum spanning tree (MST) ([14]), the
minimum matching (M) ([(11]), the Steiner tree (ST) ([12]), the Held and Karp
(HK) lower bound for the TSP ([6]) and other problems. Indeed, Steele [12]
generalized the previous theorem for a class of combinatorial problems called
subadditive Euclidean functionals. These theorems assert that there exist
constants that depend on the dimension d and on the functional F involved,
such that lim , |, (Lz/n@ /%) = B.(d)a’/¢ almost surely. Unfortunately the
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exact value of the constants Br(d) is not known for any interesting functional
F. One of the important open problems in this area is the exact determination
of these constants.

In a different direction, researchers started the investigation of the values of
combinatorial optimization problems under the independent model, in which
the distances d;; are independent and identically distributed random variables
with a common cdf F(x). Karp [9] introduced the model and analyzed the TSP
and the assignment problem in [10]. Frieze [5] and Steele [13] analyzed the
MST and proved that the MST converges in probability as n — « to {(3) =

%-1(1/k%) under the assumption that the d,; are uniformly distributed.
Until now the analysis under the independent and the Euclidean model use
entirely different techniques. We believe that another important problem in
the area is the unification of both models so that results for one model can be
used for the other.

In this paper we make progress in both these directions for the MST. In
particular we obtain an exact expression for the MST constant Bygr(d) under
the Euclidean toroidal model as a series expansion. Moreover, our techniques
generalize to the independent model. In this way we derive both these results
in a very similar way, thus obtaining a certain degree of unification between
the two models. The main reason we have used the toroidal model is to avoid
disturbing boundary effects. In an earlier version of the present paper we have
conjectured that the constant is the same with the usual Euclidean model.
Indeed, Jaillet [8] has proved our conjecture. In this way the expansion we
have obtained is also valid for the usual Euclidean model.

The paper is structured as follows. In the next section we introduce a set of
conditions under which we can characterize the MST constant as a series
expansion. In Section 3 we prove that the Euclidean toroidal model satisfies
these conditions and therefore we find exactly Bygr(d). In Section 4 we prove
that the independent model also satisfies these conditions and thus we find an
expansion for Bygr(d) in the independent model. In Section 5 we use the
series expansion from Section 3 to find better bounds for the MST in the
plane. The last section includes some concluding remarks.

2. The MST in a unified model. In this section we introduce the
following model. We are given a set of random distances d,;, 1 <i, j < n with
d;;=0 and d,; = d;;. We assume that the distribution F(x) = Pr{d;; < x}
satisfies

F(x)

lim - =1,
x—0 Cdx

and that there exists a constant M so that d;; < M. In the Euclidean model d
_represents the dimension and c, represents the volume of a sphere of unit
"radius in dimension d. Note that in the case when the d; ; are also indepen-
dent we get an independent model with the same marginal distribution for the

distances as those of the d-dimensional Euclidean model, thus creating a
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d-dimensional independent model. In this unified model the distances d;;
satisfy the following conditions:

1. (Isotropy of the points). The matrix {d,;}]";_; has the same distribution as
{d iymi)t j=1 for all permutations 7.

2. Let G,(2) denote the graph of all distances which are smaller than z and let
P, ,(2) = Pr{a given point belongs to a component of G,(2) having exactly %
points}. Fix &.

We assume that there exists f,(y) such that

(—y—)w] = fu(¥).

lim P
k,n ncy

n—oow

3. For any n > &,

1/d .
Pk,n[(—y— } <1y(y), where [ 1,(y)y"/*  dy <,
ney 0

= O(K‘(d‘l)/"’),

1d foof i 1 P, (2) 1 d
n - 2) ——|dz
o _k=Kk k,n n
where the constant in the O(K~@~1/9) js independent of 7.

Condition 1 is not crucial but convenient to work with. Both the indepen-
dent and the toroidal model clearly satisfy it. Condition 2 will be seen below to
be the natural scaling condition, which indeed leads to an expansion of
Bust(d) in the parameters k£ and y. Conditions 3 and 4 stipulate that the
contribution of large 2 and y becomes negligible, ensuring thereby the validity
of the expansion.

For example, in the case of the Euclidean toroidal model, the expected
number of points in a ball of radius (y/nc;)*/¢ is equal to y; the same holds
for the independent model as n — . In the case of the Euclidean model, it is
also helpful to consider another model asymptotically equivalent but some-
times more convenient to work with, obtained by randomizing the number n
of points in the torus, that is, replacing it with a Poisson number of points
with expectation n. Then, the points on the torus become a Poisson point
process with intensity n. If we further rescale this model by n'/¢, our
point process becomes the restriction to the torus [0, n}/¢]? of a Poisson point
process with intensity 1. For this model it is clear that P, ,[(y/c,)"/“]
converges to f,(y), where f,(y) now represents the probability that a given
point belongs to a component of the graph of all distances smaller than
(y/c)"/? with exactly £ points. In fact, the model as a whole converges to the
Poisson point process with intensity 1. This approach, advocated by Aldous
and Steele [1], reduces in effect the problem of computing the value of the MST
constant to the problem of computing the average edge in the minimum tree
defined on points generated by a Poisson point process of intensity 1.
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We can now state and prove our main theorem.

THEOREM 1. Let T, denote the length of the MST for a model that satisfies
conditions 1-4 above. Then T, satisfies

D) Busr(d) = lim o) 1
MST no n(d 1)/d d( )

1/d Z / fk(y)yl/d ldy

Proor. Let C,(z) denote the number of components in the graph G,(2) =
{GG, )Hld;; < z}. Then

T, = f:[C,,(z) — 1] dz.

Indeed, let 0 <z, ; <z,_, ‘' <z be the distances at which the graph
G, (2) attains n — 1,n — 2,...,1 components. Then

j:o[cn(z) - 1] dz = (n - l)zn—l + (n - 2)[zn—2 - zn—l] + +1[z1 - 22]

n-—1
Jj=1

Note that in the last equation we used the fact that the greedy algorithm
solves the MST so that indeed L7 1z = T,. Note that even if there are ties
2;,1 = 2; for some i’s the expansmn is still valid.

Since C,,(z) — 1 > 0, by Fubini-Tonelli’s theorem we have that

(2) E[T,] = ["E[C\(2) - 1] dz.

Introducing the indicator random variables X; ,(z), which are 1 if point i
belongs to a component of G,(z) with exactly £ points and 0 otherwise, we
have that

i, k(z)

Taking expectations and using condition 1 we obtain that

" P, (2
Ble(a] =n T 22,

H

where P, (2) = Pr{a given point belongs to a component of G,(z) having
exactly k points}.
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Therefore, from (2),

E[T) _ n Ppa(2) 1
n@-n7a =" /df [2 7w

[ Kz;l lpk (2)nV/4 dz + nlfdfo ( Y sz (2) - )dz.

k=K

dz

Taking limits and 1ntroducmg the limit inside the finite summation, we obtain

E T K-1
lim —[~—]= Y hm[ Pk 2(2)n'/¢ dz

n—o n(d byd p=1 RO®

+ lim nl/d/ (Z —P, ,(2) - )

n-—o

By making the change of variables z = (y/nc;)'/¢ and using condition 4, we
obtain

E[T,] 1 K-171 o

lim = — lim | P, ,

n—w p@-D/d d(cd)l/d kgl kB now «/;) k,
Xy 21 dy + @(K~@-D/d),

Using condition 3, we apply the dominated convergence theorem, exchanging
the limit and the integration operation. Using condition 2 and taking K —
we obtain (1). O

REMARK. Steele [14] considers the asymptotic behav10r of the Euclidean
MST with power weighted edges, that is, T, (a) = L7222, with 0 <a <d.
Using a straightforward modification of our method we prove:

THEOREM 2. Under conditions 1 and 2 and the following modifications of
conditions 3 and 4:

8. for any n >k, P, [(y/ncy)"/?] < 1,(y), where [31,(y)y®/? 1 dy < o;
4. for all K (independent of n),

nesd | [ )y Pk W(2) - —] dz*
the MST with power weights satisfies, for 0 < a < d,

E[T,
(3) Busr(a) = Jux, n[(d:lg“/l] d(c a)"/d X kf fa(y)ye/? " dy.

For a = d, the subadditivity techniques of Steele [14] do not seem to work
and it required the new techniques of Aldous and Steele [1] to prove that
indeed E[T,(d)] converges (the result was first conjectured by Bland when
a = d = 2 based on experimental evidence). Our estimates below show that 3’

0( K—(d—a)/d) ,
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and 4’ indeed hold for @ < d. Although our estimates break down when a = d,
expansion (3) still makes sense for @ = d and it is probably correct.

We now prove in the next section that the Euclidean toroidal model satisfies
the conditions 1-4.

3. The MST in the Euclidean toroidal model. We consider now the
Euclidean toroidal model, that is, the metric space [— %, 2]%, where boundary
points are identified if their coordinates are equal mod 1, the distance between
two points is the distance between one of them to the closest preimage of the
other in R? and the measure is the Lebesgue measure. Condition 1 obviously
holds. Note that ¢, is the volume of a ball in dimension d with unit radius. In
Lemma 3 below we prove that the conditions 2 and 3 are also satisfied.

LEmMa 3. In the Euclidean toroidal model, conditions 2 and 3 hold with
f2(y) and 1,(y) defined in (7) and (8), respectively, below.

ProoF. Let x,=0. For k& > 2, let Bj(2) denote the set of all
{x, x9,...,%,_,)} such that the torus spheres S'(x;, 2/2), with center x; and
radius z/2, j=0,...,k — 1 form a connected set. Another way to define
Bj(2) is that it is the set of all points {x, %, . .., x;_,} such that there exists a

tree on {x,, X, X, . . ., X, _} with all distances less or equal to z. For & = 1, we
define B(2) to be the entire torus. As an example, Bj(2) = S'(0, 2).
Let g}, ,(xy, %y, .. ., x,_) denote the volume of U #Z58'(x;, 2), where x, = 0.

By definition, P, ,(z) is the probability that a given point belongs to a
component of G,(z) having exactly £ points. Then P, ,(2) = (1 — ¢ z%)" ..

For k > 2, since there are Z _ i choices for the other £ — 1 points and all the

other points should be outside of U f;(}S '(x}, 2), we have that
_[(n-1 ' ) n—k v
(4) Pk,n(z) - (k — 1)‘[B§,(z)[1 gk,z(xlaxm'--’xk—l)] dxl dxk—-l’

where |’ denotes integration over the (¢ — 1) times product of the d-dimen-
sional torus with itself. Moreover, P, ,(2) = 0 if z > Vd /2 and n > k.

Sets which do not touch the torus boundary are identical on the torus and
in R and thus for z < 1/2k, k > 2,

_1 n—
® P = (1)L e n )] e dmy
k

where B,(2) is the set of all {x, x,, . .., ¥, _,} such that the spheres S(x;, x/2),

. j=0,...,k — 1, form a connected set, g, ,(%;, %, ..., %;_;) is the volume of
U f-;&S (x;, 2) and the integral is a usual k — 1-dimensional multiple integral
in R, For example g, , = c 2%
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By changing variables in (5) to u; = x,/2, j = 1,...,k — 1, and noting that
82Uy, 2ug, ... 2u;_1) = 2%, (U1, Uy, ..., u,_,) we get that for z < 1/2k:

-1 _
Pk,n(z) = (Z — 1)zd(k b

—k
X [1—-zdgkyl(ul,uz,...,uk_l)]n du, - du,_;.
B,

Rescaling to z = (y/nc;)*/? we obtain for & > 2,
p ([ -2 H 1_i)
ke | ne, ck (k- 1) n

(6)
y n—k
x[ [1 - ———gkyl(ul,uz,...,uk_l)] duy -+ du,_,.
B,(1)

ncy

Since the integrand and the domain in the RHS of (6) are bounded, we get for
k> 2,

1/d
fi(y) = lim Pk,,,([i] )
n—-o ncd
yk—l
(7 T E (k- 1)!

Xf exp[ —(¥/ca) 8 (U1, g, Up_y)] duy -+ duy_y
By(1)

and

n—oo d

1/d n—1
r- )l

yielding condition 2. Note that since we are only interested in the limit as n
goes to infinity, (y/nc;)'/¢ < 1/2k and thus we can indeed apply (6).
We now turn to condition 3. Note that

1/d n—1
p || i PR i <eYnD/n <[ (y) = e V/2,
| negy ney '

. Fix k > 2 and y. As we mentioned before, when z > Vd /2, P, (2) = 0. For
.z < Vd /2, we will use

g;e,z(xl’ ceey xk—-l) = Cdzd,
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and since 1 — x < e™*, we have

1) ,
P, (2) < (k - 1),/;%(2)‘3@[_(” — k)&, (%1, %3y ., Xp_1)] dy - dxy_y

nk—l

e (n—k)u? .
<o _/;%(z)dxl dx,,_,.
Since B)(z) € By(2) and (n — k)/n > 1/(k + 1), we get that

k—1

Pk,n(z) =< (_k‘_—l)!'e_ncdzd/(k*'1)kk—2(cdzd)k—l’

since £*~%(c;2%)* ! is an upper bound on the integral (£*~2 is the number of
trees on k points.) As a result,

y \4 yh-1
-~ =2  pk-2,-y/(k+1)
(8) Pk,n[(ncd) ]slk(y) e,

and obviously [5,(y)y/¢ 1dy < . O
We now prove condition 4.
LEmMMA 4. In the Euclidean toroidal model, condition 4 is satisfied.

Proor. Let Cy ,(z) be the number of components having at least K points
in the graph G,(z). As in the proof of Theorem 1,

n P
BlCr 2] =n X bal?),

As a result,
o n 1 1 1 .
d = —_—
nt/ /(; [kgKZPk,n(z) - ;sz = nl_l/dj(; (E[CK’n(z)] 1) dz,

since the distances are bounded by M. Then

of 2 1 1 M M
©® nvf [ L 7 Fen(®) - Z]d" > T R@a > T g@va

As z 1ncreases, it is clear that Cy ,(z) will vary (both increase and decrease).
Let 2], i € J*, be the lengths of those edges I} whose addition causes Ck (2)
to increase. Let 2;, 1 €J7, be the lengths of those edges /; whose addition
causes Cy ,(z) to decrease. Summation by parts yields that

f(CKn(z)—l)dz— Y oz— Y zi< ¥ 2.
ied” ieJ* ied”

Our goal is to bound ¥ ; . ;-z;. The edges /; connect components with at least
K points. The edges /; do not form a tree but rather a pseudotree in the
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sense that they connect clusters of points rather than individual points. The
clusters are defined as follows. Let us number the indices { € J~ in increasing
order. This means that edges with a higher index were added later. The last
edge /,;- connects two components of G,(z,;-) each of which has at least K
points. In each of these components, find the edge that was added later (i.e.,
with higher index). If a component contains no further edges it is a cluster.
Apply this division recursively, always subdividing into two components, until
a component contains only an edge. In this case the only two components this
edge joins are defined to be clusters. The pseudotree among the clusters has
the smallest length among all possible pseudotrees. From each component in
J~, choose an arbitrary point. Form the MST among the representatives. This
tree clearly has larger length than X ;. ,-z;, since it is also a pseudotree
combining the clusters. But, in the Euclidean plane in dimension d, the MST
among any r points is less than k,;r@~1/¢ for some constant &, (Steele [14],
Lemma 2.2). Therefore, T ; o ;-2; < kylJ~ |@-1/4 Gince |J~| < (n/K), then

1 1 (d-1)/d k
nl/d =2
/ 0 L KkPk n(z)—_}dz< i- 1/dkd(K) T gr-va:

Combining the above inequality with (9) we obtain condition 4. O

Combining Theorem 1 and Lemmas 3 and 4, we can now find a series
expansion for the MST constant as follows.

THEOREM 5. In the Euclidean toroidal model,

. E[T,] !
(10) Bumsr(d) = ,}1_120 n@-07d ~ d(cy)

where c; = w2/2/T((d/2) + 1) is the volume of the ball of unit radius in
dimension d,

fi(y) =e7,

yk—l

fu(y) = F D!

17 Z fofk(y)yl/"“dy,

fB l)exP[_(y/cd)gk,l(ulvuz""’uk—l)] duy -+ duy_y, k22,

k

where the integration is performed on the set B +(1) of all points
Auqy gy ..., uy_q} such that the spheres S(uj, D, Jj= k- 1 (u0 =0),
form a connected setand g, (u;, Uy, ..., uy_4) is the volume of U*Z5S(u;, 1),



122 F. AVRAM AND D. BERTSIMAS

where uy = 0. This expansion leads to

. E[T,]
Busr(d) = lim —G—77
r(1/d) = T(k+1/d-1)
(11) LA > ,
X[ gk l(ul, uz,...,uk_l)_(k+1/d_1)du1 e duk_l.
By»

As it is evident from the previous theorem, the functions f,(y) are increas-
ingly harder to obtain analytically as % increases. In Section 5, we use the first
five terms of this expansion to improve the best known lower bounds for the
MST constant for d = 2.

ReEMARK. Let A ((y/cy)'/?) = £%_, fo(y)/k be the number of clusters per
site (the free energy) in the continuous percolation model of spheres with
radius (y/c,;)"/? centered at points distributed according to a Poisson process
with intensity 1. If we perform the change of variables r = (y/c;)'/¢, we see
that the MST constant is the integral of the number of clusters per site. We
can then write

Busi(d) = [ “ha(r)dr.

Since Bpygr(d) is the same in both the independent and Euclidean model
(Jaillet [9]), Theorem 5 is valid for the usual Euclidean model as well.

4. The MST in the independent model. In this section we consider the
case when d,;, 1 <i, j, <n,i =j, are i.i.d. random variables, whose distribu-
tion F(x) satisfies

F(x)

li =1, F =1, Vxx>M.
xlj’r(l) Cdxd (x) x=

Again condition 1 trivially holds. In the following lemma we prove that
conditions 2 and 3 are also satisfied.

LEMMA 6. In the independent model, conditions 2 and 3 hold with f,(y)
and 1,(y) defined in (13) and (14), respectively, below.

Proor. In order for a given point to belong in a component of G,(z) with %

Z) edges joining the % points, j of them

points, we need that among the (
, =k-1,..., ’; ) are less than or equal to z and they form a connected set.
Moreover, all the £(n — k) edges joining these k2 points to all the remaining

n — k points should have lengths at least z. Since there are (: B i) choices for
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the other £ — 1 points, then conditioning on j, we obtain
k
2

()

[F(2)’[1 - F()]*»+(3) N, ,,
j=k—1

(12) P2 - (311)

where N, ; is the number of connected graphs with j edges and % vertices.
For example, N, ,_; = k*72. Let

han(@) = (1 2 D R@I 0 - R e (a) i,

be the first term in the sum above. Then, it is easy to establish that

1/d E—2
: Y — k k—1,—ky
r}l—lﬂo hk’”[(ncd) ] (k- 1)!y e

Since the contribution to the limit of the other terms in the RHS of (12) is 0

we obtain
1/d k-2
E i | I A
neg (k- 1)! ’
yielding condition 2.

To establish condition 3 we note again that for any % < n,
P, ((y/ncy)/¢]) = 0 for (y/ncy)/¢ > M. Since n - o, for z = (y/ncy)"/? -
0 we can find two constants a, A such that

az? < F(z) < Az°.

(13)  fi») = lim P,

k
Let M, = 2(2) Ny, ;- From (12) we obtain

j=k-1
1 - -
Pin(2) < ro gy (P21 e e M,

from which

y 1/d 1 k-1 \
(14) Pk,n[(n_cd) ] <h(y) = W(;‘;) eF Myt temakv/ca
and thus condition 3 holds. O
We now consider condition 4.
LeEMMA 7. In the independent model, condition 4 is satisfied.

PrOOF. As in Lemma 4, let Cx ,(2) be the number of components having
at least K points in the graph. G,(2). Then (9) is still valid and also

f[Cxn(e) -Ddz= T 2~ T zi< T =7

i€d” ied* ied”
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Taking expectations we obtain that
[ (E[Cxn(2)] ~1)dze<E| ¥ z ]
ied”

Using the same arguments as in the proof of Lemma 4, we obtain that
E[X ;< j-2;] is smaller than the expected length of the MST on the representa-
tives. But, the expected length of the MST on r points is less than % r@~- /¢
for some constant %, (Timofeev [15]). Therefore,

E[ Y z,.-] < kyE[lJ-1@-174].
ied”
Since |J 7| < n/K then

n\d-1/d
Rp—

1
nl/df [ Z Pk n(z) ]dz < (d——l)/dkd(E
Combining the above inequality with (9) we obtain condition 4. O

Combining Lemmas 6 and 7 and Theorem 1, we can find the following
expression for the MST under the independent model:

THEOREM 8. Under the independent model,
E[T,] 1 > T'(k+(1/d) — 1)
lim —=—-5 = 17d ) A/ +1
n—ow N d(cd) 1 k'k

ProoF. From (1) and (13), we have

E[Tn] 1 s 1 @ k-1 __p 1/d-1
ne @72 = 17 kglk!kl/d+1j(; (ky)" e ™ (ky) "™ "d(ky)

1 o F(k+(1/d)_1) ]
d(cd)l/d k=1 ElpA/d)+1 .

REMARK. The MST with power weights has the following expansion for
0<a=x<d:
E[T,(a)] a > I'(k+ (a/d) — 1)
n(d—a)/d = d(cd)a/d kgl k!k(a/d)+1

lim
n—ow
For a = d = 2, the expansion gives {(38)/m.
For d = 1 and c¢; = 1, the distances are uniformly distributed and thus for
a = 1, we get the result due to Frieze [5] that lim,, _,,, E[T,] = {(3). Fora =1
and general d, we obtain the same expansion for the independent case as in
Timofeev [16] who analyzes Prim’s algorithm, while we analyzed Kruskal’s
algorlthm

5. Improved lower bounds in the Euclidean model. We now turn
our attention to the derivation of better bounds for the MST constant under
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the Euclidean model for d = 2. Using Theorem 5, we compute the contribu-
tion of the first five terms in the expansion (11).

THEOREM 9. For d = 2, the Euclidean MST constant satisfies

(15) Busr(2) = 0.600822.

Proor. The first term in the series expansion of (11) gives Bygr = 0.5.

For & = 2, By(1) is the set of points u; such that the two circles with
centers u, and O of radius ; intersect. If u, = (r,0), r < 1, are the polar
coordinates of u,, then g, (u,) = 27w — ¢(r), where ¢(r) is the area of
intersection of two circles of unit radius at distance r apart. From simple
trigonometry, we can derive ¢(r) as follows:

() -ry/1- (3)
¢(r) = 2cos (2 r (2 .
As a result, using only the first two terms in the expansion (11), we obtain
w3/2 r

1
BMST = E + 4 '/;‘=0(21T _ ¢(r))3/2 dr.

Using the software package Mathematica to perform the integral numerically,
we find that the contribution of the first two terms Bygr > 0.575957.

We now compute the third term in the series expansion. B4(1) is the set of
points %, u, such that the three circles with centers u,, u, and 0 of radius 3
intersect. Let u, = (r1,0,), uy = (ry, 6,) be the polar coordinates of u, and u,.
Then the contribution of the third term is

1 I'(5/2)
Ii=95"%

1T(5/2)
2 6 [/B

-5/2
f 83,1(“1, usy) du, du,
B3(1)

-5/2
g3,1(y1,u2) du, du,
JDN{r;<ry} ‘

—5/2
+ 83,1(uy1, uz) du, du,
By(L)N{r; =1y}

I'(5/2)
/,

6 33,1(“1’“2)_5/2 du,du,,

3(1)0("15"2}

because of symmetry. Since r; < r,, this implies that r; < 1 since the circle
S(u,, ) has to intersect the circle S(0, 3). In order for the circle S(u,, 3) to
intersect at least one of S(u;, 3) or S(0, 1), u, has to lie either in

A =5(0,1) — S(0,7,) = {(ry,05)lr; <1, < 1}
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F1G. 1. Three intersecting circles.

or in
B =S(uy,1) - 8S(0,1)

2, .2
ity -1
= {(r2,02)|1 <ry<r;+1, —cos I(Tlrz—)

ri+r2-1
<0, < cos‘l(—l—z——)}.
2ryry
Moreover, from simple geometry (see also Figure 1),

8s,1(u1,u3) <27 — ¢(1y) + m — P(1r3) = 37 — d(ry) — d(73).
Then

I'5/2)[ 11 2 1 pon _5/2
> riro(8m — d(ry) — d(r dr,d6,dr,d6
3 6 [£1=0j;1=0£2=r1L2=012( T — ¢(ry) — &( 2)) 1QU,ary; av,
1 (2r [l4m
+
fr1=o ol=ofr2=1
X [osTXOEErE=D/2rwD (3 — () — d(ry)) % dry d6, dry 6,
0= —cos " N(rf+r§—1)/2ryry)
I‘(5/2) 1

rr1r2(3""' — ¢(r)) — #(r3)) "> dr,dr,

I‘2

2riry

2 2 __ 1
+4'rrf fr”:l (rl_w—_)rer(em = ¢(ry) — $(ry)) " *dr, dﬂ].

Calculating the integrals numerically using Mathematica we find that the
third term in the expansion is I3 > 0.021874 and thus Bygr > 0.597831.

" Building on the idea used to compute a lower bound on the third term in the

series expansion we can compute a lower bound on the %2th term in expansion

(11) as follows: The area of integration B,(1) is larger than the sphere of



MINIMUM SPANNING TREE CONSTANTS 127

radius larger than 1, since in the unit sphere all the spheres S(u;, ;) intersect.
Then if u; = (r;,6;) in polar coordinates, then

8r Uy ttg, .. uy_y) <kw— Y. o(r).
i=1

As a result, a lower bound on the k£th term is

T(k+1/2 - 1)

= 2k CL

—-(k-(1/20p 1

x [t ot Hr[kw—Zq&(r)] I dr.

r;=0 rp-1=0i=1

Using numerical integration we find that I, > 0.002591 and I; > 0.000399.
The first five terms then give

Bumsr = 0.600822. o

With more work, one can potentially calculate better bounds using the
series expansion. The best known previous bound for Bygr was 3 and it is
based on the distance to the nearest neighbor (see Bertsimas and van Ryzin
[4]). Note that the previous bound corresponds to the contribution of the first
term in the series expansion.

REMARK. We can use the expansion to find a lower bound for the Bland
constant as well, that is, B(2). Then the contribution of the first two terms
gives BMST(z) = 0.401.

5.1. Bounds for general dimensions. In higher dimensions one can use
the series expansion for Bygr(d) to find that

r(1/d) 2Y/4r(1/d)
(16) T}/" < Bmsr(d) < T}iﬂi——

The lower bound corresponds to the first term in the expansion (11), while the
upper bound, which uses a technique of Hall [7] (pages 264—-265), is derived as
follows. Starting with the expansion (2) we observe that C,(z) < L?_,Y(2),
where Y,(z) are 1 when point i does not have a neighbor within z and towards
the right (see Figure 2), and 0 otherwise. This is true since in every compo-
nent, there exists at least one rightmost point.

. Taking expectations and using the isotropy of points in the toroidal model
we obtain that E[C,(z)] < n Pr{a given point has no neighbors closer than
(y/ncy)"/¢ and towards the right} = n(1 — (c;/2)2%)"~ 1. Substituting this
bound in (2) and making the change of variables z = (2y /ncd)l/ 9. we obtain
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|

F1G. 2. Upper bound for general dimension d.

that

. E[T,]
Busr(d) = lim ——75

91/d o y\r-1
< — lim (1 - —) lyd-14g
d(cd)l/d 0 n—o® n Y Y

21/4T(1/d)
dey/¢

Note that Bertsimas and van Ryzin [4] find that the exodic tree achieves this
upper bound exactly.

6. Concluding remarks. Our analysis for the MST constants under
both the Euclidean and independent model was made possible by analyzing
directly the greedy algorithm, which solves the MST exactly. We have also
analyzed in [2] the greedy algorithm applied to TSP and matching in both
models and found series expansions for both problems.

Another interesting observation is the relation of the two models. As d — o,
we expect that the graph G((y/c;)'/?¢) in the Poisson model converges to a
forest, that is, to a graph whose clusters have no cycles (the clusters are then
branching trees with Poisson distribution of offsprings with parameter y).
This is also the limit as n — « of the independent model. Furthermore, we
, expect that the number of cycles is stochastically decreasing in d (and as
d > = it becomes zero).

Let f{P(y), f{¥(y) be the corresponding functions in (7) and (12) for the
independent and the Euclidean toroidal model, respectively. From (13), f{"(y)
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is independent of the dimension d, whereas f{¥)(y) depends on d. From the
conjectured structure of G((y/c;)'/¢) we expect that the following connection
exists between the two models.

CONJECTURE 1.
(17) lim f{®(y) = f{"(5).

CONJECTURE 2.

E I
> f¥ ;(y) . ¥ fx ;(y),
(18) k>K k>K
2 > 2(y)
d-w ok pox kO

Conjecture 1 may be easily checked for the cases £ =1 and 2 by direct
computation. Furthermore, there are some interesting corollari... of Conjec-
ture 2, for example, B{f3(d) > B{L1(d). We can check thi= 7uc d = 2. In this
case, Theorem 8 for the independent model gives B{{2(2) = 0.568, that is, the
constant for the independent model provides a lower bound for the Euclidean
model. Also using Conjecture 2 with K = 4, 5, we obtain that the contributions
of the fourth and fifth terms, respectively, in the Euclidean model are larger
than in the independent, which allows us to slightly improve our bounds to
I, > 0.004888 and I > 0.002445. Using the Euclidean model for the first
three terms and the independent model for the remaining terms allows us to
improve our previous lower bound (15) to S{{2.(2) > 0.608701.
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